
1

The Assignment-2 Specification and Marking Criteria

Java RMI (Remote Method Invocation, reference Chapter 5 of the textbook and Week-3 lecture)

enables the local invocation and remote invocation use the same syntax to implement generic

remote servers like the Compute Engine example in Week-3 lecture slides. However, Java RMI

needs 2 HTTP servers to transfer Java classes between a RMI client and a RMI server at runtime.

In addition, Java RMI applications need a RMI Registry for registering or looking up the remote

objects.

In this assignment (assignment-2), you are to implement a remote invocation framework that is

similar to Java RMI but lightweight (note: for this assignment, you don’t use any Java RMI APIs).

To implement the framework, you will need to use Java Interface, Java Objection Serialization,

Java Thread and client/server model. Recall you have created some Java examples about these

Java components and models for assignment-1; now you will need to use these Java

components as a reference to build this framework. Thus if necessary, you may need to review

your assignment-1.

This assignment specification is as follows.

Part 1: Java TCP Networking, Multi-threading and Object Serialization Programming

The framework consists of a compute-server, a compute-client and a codebase repository,

which are depicted in the following diagram. The framework is a generic computing architecture

because the compute-client and compute-server just need to know the Task and CSMessage

components in advance before the framework can start to run. The specification of the

components is as follows.

1. The interaction contract

The interaction contract between the client and server is defined by the Task interface:

//The Task interface (interaction contract) between clients and the server

public interface Task {

 public void executeTask();

 public Object getResult();}

Compute-client
Compute-server

Codebase

repository

Compute-task (that implements

Task interface) or CSMessage

Upload compute-task classes

Download

compute-task classes

2

Every compute-task must implement the Task interface. Executing the executeTask()

method will perform the task and set the result. Calling the getResult() method will return

the result.

2. The compute-client and compute-server

The compute-server is used as a generic compute-engine. While running, the server is

continuously waiting for the compute-tasks. A compute-task is created by a compute-client and

sent as a serialized object to the compute-server. Once the compute-server receives a task, it

will cast (deserialize) it into the Task interface type and call its executeTask() method.

After executing the task, the compute-server will send the same object back to the compute-

client.

The compute-client is continuously accepting a user’s requests. Every request specifies a

compute-problem and its corresponding parameters. For a request, the compute-client creates

a compute-task and sends it as a serialized object to the compute-server. Once receiving the

compute-task object back from the server, the compute-client will call the getResult()

method of the object to display the result.

The following screenshots show the interaction between a compute-client and the compute-

server.

3

3. The codebase repository

Such a framework makes the compute-server generic. That is, the compute-server just needs to

know the Task interface, then it can be compiled and run. If a compute-client implements a

new compute-task after the server is run up, the compute-client just needs in some way (in real

world application it could be a FTP server, but in this assignment, you just need to copy the files

into a directory) to upload the Java class of the compute-task into a pre-determined network

location (e.g. the codebase directory), which the compute-server can access from its Java

classpath. Then the compute-server can perform such a new compute-task. Therefore, the

server never needs to be shut down, recompiled, and restarted.

The following screenshot shows that there are 2 compute-tasks that have been uploaded into

the codebase repository.

4. The error message

However, when there is an exception occurred (e.g. a compute-client wants the compute-server

to perform a compute-task, but forgets uploading the Java class of the compute-task) onto the

codebase of compute-server, the compute-server will create a CSMessage object and sends it

back to the compute-client. Note: the CSMessage follows the interaction contract by

implementing the Task interface. By calling the getResult() method, the compute-client

will know the problem and fix it later on.

import java.io.*;

public class CSMessage implements Task, Serializable {

 //The variable that holds the error information

 private String finalResult;

4

 public CSMessage() {

 }

 //Return the final computing result

 public Object getResult() {

 return finalResult;

 }

 //Set the error message

 public void setMessage(String msg) {

 finalResult=msg;

 }

 public void executeTask() {

 }

 }

The following screenshots show the situation of calling the compute-server before and after the

compute-task ComputeGCD is uploaded.

• Before the compute-task ComputeGCD is uploaded:

• After the compute-task ComputeGCD is uploaded:

5

To complete this assignment, you need to implement such a framework and integrate the

Calculate Pi, Calculate Primes and Calculate the Greatest Common Divisor tasks into this

framework. The algorithms of these tasks are given on the unit web site. Your compute-server

must be multi-threaded and follow the ‘thread-per-connection’ architecture (reference Week-4

contents). The communication between the compute-server and the compute-client must use

TCP protocol through the Java TCP API Socket and ServerSocket as described in Week-2

contents of this unit and also online at,

http://docs.oracle.com/javase/7/docs/api/java/net/Socket.html, and

6

http://docs.oracle.com/javase/7/docs/api/java/net/ServerSocket.html). Please note: use of any

other protocols will incur no marks to be awarded for this part.

To implement the framework, you need to implement the following Java classes:

1. A Java application to implement the compute-client;

2. A Java application to implement the compute-server; and

3. A Java class to implement the request processing thread.

4. A number of Java classes to implement Calculate Pi, Calculate Primes and Calculate the

Greatest Common Divisor tasks.

Note: to simulate compute-client and compute-server interaction, you don’t have to run them

on two physical machines. Instead, they can be run on two JVMs (Java Virtual Machines) on a

single physical machine. As a result, the name of the server machine can be ‘localhost’.

Part 2: Program use and test instruction

After the implementation of the framework, prepare an end user instruction about how to use

your software. The instruction should cover all aspects of the framework as detailed in the

marking criteria below.

Submission

You need to provide the following files in your submission.

1. Files of Java source code of the compute-client, the compute-server and the processing

thread and the compute-tasks. The in-line comments on the data structure and program

structure in the programs are required. These source code files must be able to be

compiled by the standard JDK (Java Development Kit) or NetBeans from Oracle

(http://www.oracle.com/technetwork/java/index.html).

2. The compiled Java class files of the source code. These Java classes must be runnable on

the standard Java Runtime Environment (JRE) or NetBeans from Oracle

(http://www.oracle.com/technetwork/java/index.html).

3. A Microsoft Word document to address the issues as specified in the Part 2 above.

All the required files must be compressed into a zip file for submission. You must submit your

assignment via the unit web site. Any hardcopy or email submission will not be accepted. After

the marked assignments are returned, any late submissions will not be accepted.

7

The Marking Criteria

Marking Criteria Available Marks

Part 1: The implementation of the framework 12

1. Whether the program can be compiled by JDK and

executed by JRE or NetBeans

1

2. Whether the given Task interface is properly used as

the unique communication contract between the

client and server

2

3. Whether the 3 compute-tasks have been implemented

as Java serializable objects, can be successfully

transferred between the client and server and the

server can return correct results to the client

3

4. Whether ‘the task has not been uploaded’ exception

can be handled by using the CSMessage

2

5. Whether the client program functions correctly 2

6. Whether the sever is multi-threaded by using the

‘thread-per-connection’ model

2

Part 2: Program use and test instruction 8

1. Whether the program installation is clearly described 1

2. Whether the codebase is clearly described 1

3. Whether the test instruction covers all 3 compute-

tasks

3

4. Whether the test instruction covers ‘the task has not

been uploaded’ exception handling.

1

5. Whether the necessary screenshots have been

provided and helpful for the test instruction.

2

Sub Total for Assignment-2 20

8

Late Penalty -1.0 (5%) each calendar

day(either full or part)

Plagiarism Penalty

Total for Assignment-2

